Chapter 3
Learn smarter, practice harder. Skill-building made simple, fun, and effective. Mprezz turns effort into expertise
MATRICES
Exercise 3.1
Q1:
In the matrix
[ 2 5 19 –7
A = 35 –2 5/2 12
√3 1 –5 17 ], write:
(i) The order of the matrix
(ii) The number of elements
(iii) The elements a13, a21, a33, a24, a23
Solution:
The given matrix has 3 rows and 4 columns.
(i) Order of the matrix:
Number of rows × Number of columns = 3 × 4
(ii) Number of elements:
Total elements = 3 × 4 = 12
(iii) Required elements:
a13 = element in 1st row, 3rd column = 19
a21 = element in 2nd row, 1st column = 35
a33 = element in 3rd row, 3rd column = –5
a24 = element in 2nd row, 4th column = 12
a23 = element in 2nd row, 3rd column = 5/2
_____________________________________________________________
Q2. If a matrix has 24 elements, what are the possible orders it can have? What if it has 13 elements?
Solution:
An order of a matrix is (rows) × (columns). Possible orders are all factor pairs of the number of elements.
For 24 elements, factor pairs of 24 are:
1 × 24, 2 × 12, 3 × 8, 4 × 6, 6 × 4, 8 × 3, 12 × 2, 24 × 1.
(Usually we list unique row×column pairs: 1×24, 2×12, 3×8, 4×6, 6×4, 8×3, 12×2, 24×1.)For 13 elements (13 is prime), the only factor pairs are:
1 × 13 and 13 × 1.
_____________________________________________________________
Q3. If a matrix has 18 elements, what are the possible orders it can have? What if it has 5 elements?
Solution:
For 18 elements, factor pairs of 18 are:
1 × 18, 2 × 9, 3 × 6, 6 × 3, 9 × 2, 18 × 1.For 5 elements (5 is prime), the only orders are:
1 × 5 and 5 × 1.
_____________________________________________________________
Q 4. Construct a 2 × 2 matrix A = [aij], whose elements are given by:
(i) aij = (i + j)² / 2
(ii) aij = i / j
(iii) aij = (i + 2j)² / 2
(Here i and j take values 1 and 2.)
Solution:
(i) aij = (i + j)² / 2
a11 = (1 + 1)² / 2 = 4 / 2 = 2
a12 = (1 + 2)² / 2 = 9 / 2
a21 = (2 + 1)² / 2 = 9 / 2
a22 = (2 + 2)² / 2 = 16 / 2 = 8
Matrix A = [ 2 9/2
9/2 8 ]
_____________________________________________________________
(ii) aij = i / j
a11 = 1 / 1 = 1
a12 = 1 / 2 = 1/2
a21 = 2 / 1 = 2
a22 = 2 / 2 = 1
Matrix A =
[ 1 1/2
2 1 ]
_____________________________________________________________
(iii) aij = (i + 2j)² / 2
a11 = (1 + 2·1)² / 2 = 3² / 2 = 9/2
a12 = (1 + 2·2)² / 2 = 5² / 2 = 25/2
a21 = (2 + 2·1)² / 2 = 4² / 2 = 16/2 = 8
a22 = (2 + 2·2)² / 2 = 6² / 2 = 36/2 = 18
Matrix A =
[ 9/2 25/2
8 18 ]
_____________________________________________________________
Q5
Construct a 3 × 4 matrix whose elements are given by
(i) aᵢⱼ = (1/2) × | -3i + j |
(ii) aᵢⱼ = 2i − j
where i = 1,2,3 and j = 1,2,3,4.
Solution (i)
Formula: aᵢⱼ = (1/2)| -3i + j |
Row i = 1:
j = 1: -3 + 1 = -2 → | -2 | = 2 → 2/2 = 1
j = 2: -3 + 2 = -1 → | -1 | = 1 → 1/2
j = 3: -3 + 3 = 0 → 0/2 = 0
j = 4: -3 + 4 = 1 → 1/2
Row i = 2:
j = 1: -6 + 1 = -5 → 5/2
j = 2: -6 + 2 = -4 → 4/2 = 2
j = 3: -6 + 3 = -3 → 3/2
j = 4: -6 + 4 = -2 → 1
Row i = 3:
j = 1: -9 + 1 = -8 → 8/2 = 4
j = 2: -9 + 2 = -7 → 7/2
j = 3: -9 + 3 = -6 → 6/2 = 3
j = 4: -9 + 4 = -5 → 5/2
Matrix:
1 1/2 0 1/2
5/2 2 3/2 1
4 7/2 3 5/2
____________________________________________________________
Solution (ii)
Formula: aᵢⱼ = 2i − j
Row i = 1:
1, 0, -1, -2
Row i = 2:
3, 2, 1, 0
Row i = 3:
5, 4, 3, 2
Matrix:
1 0 -1 -2
3 2 1 0
5 4 3 2
_____________________________________________________________
Q6 Find x, y, z.
(i)
4 = y → y = 4
3 = z → z = 3
x = 1
5 = 5 (true)
Answer: x = 1, y = 4, z = 3
_____________________________________________________________
(ii)
x + y = 6
5 + z = 5 → z = 0
xy = 8
Possible Solutions: (x, y) = (2, 4) or (4, 2)
Answer: x = 2, y = 4, z = 0 (or x = 4, y = 2, z = 0)
_____________________________________________________________
(iii)
x + y + z = 9
x + z = 5
y + z = 7
From x + z = 5, and y + z = 7:
Subtract from x + y + z = 9 → y = 4
Then 4 + z = 7 → z = 3
Then x + 3 = 5 → x = 2
Answer: x = 2, y = 4, z = 3
_____________________________________________________________
Q7
Find a, b, c, d from:
a − b = −1
2a + c = 5
2a − b = 0
3c + d = 13
2a − b = 0 → b = 2a
Substitute in a − b = −1:
a − 2a = −1 → a = 1 → b = 2
2a + c = 5 → 2 + c = 5 → c = 3
3c + d = 13 → 9 + d = 13 → d = 4
Answer: a = 1, b = 2, c = 3, d = 4
_____________________________________________________________
Q8:
A = [aij]m×n is a square matrix, if
(A) m < n
(B) m > n
(C) m = n
(D) None of these
Solution:
A square matrix has the same number of rows and columns. Therefore the condition is m = n.
Answer: (C) m = n
_____________________________________________________________
Q9. Which of the given values of x and y make the following pair of matrices equal?
Left matrix:
[ 3x + 7 5
y + 1 2 − 3x ]
Right matrix:
[ 0 y − 2
8 4 ]
Options:
(A) x = −1/3, y = 7
(B) Not possible to find
(C) y = 7, x = −2/3
(D) x = −1/3, y = −2/3
Solution:
Two matrices are equal only if corresponding entries are equal. So equate entries:
Top-left: 3x + 7 = 0
⇒ 3x = −7 ⇒ x = −7/3.Top-right: 5 = y − 2
⇒ y − 2 = 5 ⇒ y = 7.Bottom-left: y + 1 = 8
⇒ y + 1 = 8 ⇒ y = 7 (consistent with step 2).Bottom-right: 2 − 3x = 4
⇒ −3x = 2 ⇒ x = −2/3.
Compare results for x from steps 1 and 4: x would need to be both −7/3 and −2/3, which is impossible.
Therefore there is no single pair (x, y) that satisfies all four corresponding equalities. Hence the matrices cannot be made equal for any x, y.
Answer: (B) Not possible to find
_____________________________________________________________
Q10. The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is:
(A) 27 (B) 18 (C) 81 (D) 512
Solution:
A 3 × 3 matrix has 9 entries. Each entry can be either 0 or 1, so there are 2 choices per entry. Total number of distinct matrices = 2^9 = 512.
Answer: (D) 512
_____________________________________________________________
Exercise 3.2
Q1:
Let
A = [ 2 4
3 2 ], B = [ 1 3
−2 5 ], C = [ −2 5
3 4 ]
Find each of the following:
(i) A + B (ii) A − B (iii) 3A − C (iv) AB (v) BA
Solution
(i) A + B
A + B = [ 2 4
3 2 ] + [ 1 3
−2 5 ]
= [ (2+1) (4+3)
(3−2) (2+5) ]
= [ 3 7
1 7 ]
(ii) A − B
A − B = [ 2 4
3 2 ] − [ 1 3
−2 5 ]
= [ (2−1) (4−3)
(3−(−2)) (2−5) ]
= [ 1 1
5 −3 ]
(iii) 3A − C
3A = 3 × [ 2 4
3 2 ] = [ 6 12
9 6 ]
Now,
3A − C = [ 6 12
9 6 ] − [ −2 5
3 4 ]
= [ (6−(−2)) (12−5)
(9−3) (6−4) ]
= [ 8 7
6 2 ]
(iv) AB
AB = [ 2 4
3 2 ] × [ 1 3
−2 5 ]
= [ (2×1 + 4×(−2)) (2×3 + 4×5)
(3×1 + 2×(−2)) (3×3 + 2×5) ]
= [ −6 26
−1 19 ]
(v) BA
BA = [ 1 3
−2 5 ] × [ 2 4
3 2 ]
= [ (1×2 + 3×3) (1×4 + 3×2)
(−2×2 + 5×3) (−2×4 + 5×2) ]
= [ 11 10
11 2 ]
Final Answers
A + B = [ 3 7
1 7 ]
A − B = [ 1 1
5 −3 ]
3A − C = [ 8 7
6 2 ]
AB = [ −6 26
−1 19 ]
BA = [ 11 10
11 2 ]
_____________________________________________________________
Q2: Compute the following:
(i)
A =
| a b |
| –b a |
B =
| a b |
| b a |
Find: A + B
Solution:
Add corresponding elements:
| a + a b + b |
| –b + b a + a |
=
| 2a 2b |
| 0 2a |
Answer:
A + B = | 2a 2b |
| 0 2a |
_____________________________________________________________
(ii)
Add:
| a² + b² b² + c² |
| a² + c² a² + b² |
+
| 2ab 2bc |
| –2ac –2ab |
Solution:
| (a² + b² + 2ab) (b² + c² + 2bc) |
| (a² + c² – 2ac) (a² + b² – 2ab) |
=
| (a + b)² (b + c)² |
| (a – c)² (a – b)² |
Answer: | (a + b)² (b + c)² |
| (a – c)² (a – b)² |
_____________________________________________________________
(iii)
Add the two matrices:
| –1 4 –6 | + | 12 7 6 |
| 8 5 16 | + | 8 0 5 |
| 2 8 5 | + | 3 2 4 |
Solution:
| (–1+12) (4+7) (–6+6) |
| (8+8) (5+0) (16+5) |
| (2+3) (8+2) (5+4) |
=
| 11 11 0 |
| 16 5 21 |
| 5 10 9 |
Answer:
| 11 11 0 |
| 16 5 21 |
| 5 10 9 |
_____________________________________________________________
(iv)
Add:
| cos²x sin²x | + | sin²x cos²x |
| sin²x cos²x | + | cos²x sin²x |
Solution:
| (cos²x + sin²x) (sin²x + cos²x) |
| (sin²x + cos²x) (cos²x + sin²x) |
Since cos²x + sin²x = 1,
=
| 1 1 |
| 1 1 |
Answer:
| 1 1 |
| 1 1 |
_____________________________________________________________
Q3: Compute the indicated products.
(i) Multiply
[ a b ]
[ −b a ]
by
[ a −b ]
[ b a ]
Solution (elementwise product):
Top-left = a·a + b·b = a² + b²
Top-right = a·(−b) + b·a = −ab + ab = 0
Bottom-left = (−b)·a + a·b = −ab + ab = 0
Bottom-right = (−b)(−b) + a·a = b² + a² = a² + b²
Answer:
[ a² + b² 0 ]
[ 0 a² + b² ]
_____________________________________________________________
(ii) Multiply column [ 1 ] [ 2 ] [ 3 ] by row [ 2 3 4 ]
This is an outer product. Rows are multiples of the row vector:
Answer (3 × 3):
[ 1·2 1·3 1·4 ] = [ 2 3 4 ]
[ 2·2 2·3 2·4 ] = [ 4 6 8 ]
[ 3·2 3·3 3·4 ] = [ 6 9 12 ]
So the product is:
[ 2 3 4 ]
[ 4 6 8 ]
[ 6 9 12 ]
_____________________________________________________________
(iii) Multiply
[ 1 −2 ]
[ 2 3 ]
by
[ 1 2 3 ]
[ 2 3 1 ]
Compute row×column:
Row1·Col1 = 1·1 + (−2)·2 = 1 − 4 = −3
Row1·Col2 = 1·2 + (−2)·3 = 2 − 6 = −4
Row1·Col3 = 1·3 + (−2)·1 = 3 − 2 = 1
Row2·Col1 = 2·1 + 3·2 = 2 + 6 = 8
Row2·Col2 = 2·2 + 3·3 = 4 + 9 = 13
Row2·Col3 = 2·3 + 3·1 = 6 + 3 = 9
Answer: (2 × 3 matrix)
[ −3 −4 1 ]
[ 8 13 9 ]
_____________________________________________________________
(iv) Multiply
[ 2 3 4 ]
[ 3 4 5 ]
[ 4 5 6 ]
by
[ 1 −3 5 ]
[ 0 2 4 ]
[ 3 0 5 ]
Compute (row by column):
Row1:
(2·1 + 3·0 + 4·3) = 2 + 0 + 12 = 14
(2·(−3) + 3·2 + 4·0) = −6 + 6 + 0 = 0
(2·5 + 3·4 + 4·5) = 10 + 12 + 20 = 42
Row2:
(3·1 + 4·0 + 5·3) = 3 + 0 + 15 = 18
(3·(−3) + 4·2 + 5·0) = −9 + 8 + 0 = −1
(3·5 + 4·4 + 5·5) = 15 + 16 + 25 = 56
Row3:
(4·1 + 5·0 + 6·3) = 4 + 0 + 18 = 22
(4·(−3) + 5·2 + 6·0) = −12 + 10 + 0 = −2
(4·5 + 5·4 + 6·5) = 20 + 20 + 30 = 70
Answer (3 × 3):
[ 14 0 42 ]
[ 18 −1 56 ]
[ 22 −2 70 ]
_____________________________________________________________
(v) Multiply
[ 2 1 ]
[ 3 2 ]
[ −1 1 ]
by
[ 1 0 1 ]
[ −1 2 1 ]
Compute:
Row1:
2·1 + 1·(−1) = 2 − 1 = 1
2·0 + 1·2 = 0 + 2 = 2
2·1 + 1·1 = 2 + 1 = 3
Row2:
3·1 + 2·(−1) = 3 − 2 = 1
3·0 + 2·2 = 0 + 4 = 4
3·1 + 2·1 = 3 + 2 = 5
Row3:
(−1)·1 + 1·(−1) = −1 − 1 = −2
(−1)·0 + 1·2 = 0 + 2 = 2
(−1)·1 + 1·1 = −1 + 1 = 0
Answer (3 × 3):
[ 1 2 3 ]
[ 1 4 5 ]
[ −2 2 0 ]
_____________________________________________________________
(vi) Multiply
[ 3 −1 3 ]
[ −1 0 2 ]
by
[ 2 −3 ]
[ 1 0 ]
[ 3 1 ]
Compute:
Row1·Col1 = 3·2 + (−1)·1 + 3·3 = 6 − 1 + 9 = 14
Row1·Col2 = 3·(−3) + (−1)·0 + 3·1 = −9 + 0 + 3 = −6
Row2·Col1 = (−1)·2 + 0·1 + 2·3 = −2 + 0 + 6 = 4
Row2·Col2 = (−1)·(−3) + 0·0 + 2·1 = 3 + 0 + 2 = 5
Answer (2 × 2):
[ 14 −6 ]
[ 4 5 ]
_____________________________________________________________
Q4: 4. If
A = [ 1 2 –3
5 0 2
1 –1 1 ],
B = [ 3 –1 2
4 2 5
2 0 3 ],
C = [ 4 1 2
0 3 2
1 –2 3 ],
then compute (A + B) and (B – C). Also, verify that
A + (B – C) = (A + B) – C.
Solution:
(i) A + B
A + B = [ (1+3) (2+–1) (–3+2)
(5+4) (0+2) (2+5)
(1+2) (–1+0) (1+3) ]
= [ 4 1 –1
9 2 7
3 –1 4 ]
(ii) B – C
B – C = [ (3–4) (–1–1) (2–2)
(4–0) (2–3) (5–2)
(2–1) (0–(–2)) (3–3) ]
= [ –1 –2 0
4 –1 3
1 2 0 ]
(iii) A + (B – C)
A + (B – C) = [ (1+–1) (2+–2) (–3+0)
(5+4) (0+–1) (2+3)
(1+1) (–1+2) (1+0) ]
= [ 0 0 –3
9 –1 5
2 1 1 ]
(iv) (A + B) – C
(A + B) – C = [ (4–4) (1–1) (–1–2)
(9–0) (2–3) (7–2)
(3–1) (–1–(–2)) (4–3) ]
= [ 0 0 –3
9 –1 5
2 1 1 ]
Hence verified that
A + (B – C) = (A + B) – C
_____________________________________________________________
Q5: If
A = [ 2/3 1 5/3
1/3 2/3 4/3
7/3 2 2/3 ]
and
B = [ 2/5 3/5 1
1/5 2/5 4/5
7/5 6/5 2/5 ],
compute 3A − 5B.
Work (multiply each matrix by scalar):
3A = [ 2 3 5
1 2 4
7 6 2 ]
5B = [ 2 3 5
1 2 4
7 6 2 ]
Therefore
3A − 5B = [ 2−2 3−3 5−5
1−1 2−2 4−4
7−7 6−6 2−2 ]
= [ 0 0 0
0 0 0
0 0 0 ].
Answer: 3A − 5B is the 3×3 zero matrix.
_____________________________________________________________
Q6: 6. Simplify
cos θ [ cos θ sin θ
–sin θ cos θ ] + sin θ [ sin θ –cos θ
cos θ sin θ ]
Solution:
Multiply each matrix by its scalar:
= [ cos²θ cos θ sin θ
–sin θ cos θ cos²θ ] + [ sin²θ –sin θ cos θ
sin θ cos θ sin²θ ]
Now add corresponding elements:
= [ cos²θ + sin²θ cos θ sin θ – sin θ cos θ
–sin θ cos θ + sin θ cos θ cos²θ + sin²θ ]
Simplify each term:
cos²θ + sin²θ = 1
cos θ sin θ – sin θ cos θ = 0
–sin θ cos θ + sin θ cos θ = 0
Hence the result is:
= [ 1 0
0 1 ]
Final Answer:
The simplified matrix is the Identity Matrix,
[ 1 0; 0 1 ].
_____________________________________________________________
Q7:
Find X and Y if
(i) X + Y = [ 7 0
2 5 ] and X − Y = [ 3 0
0 3 ]
(ii) 2X + 3Y = [ 2 3
4 0 ] and 3X + 2Y = [ 2 –2
–1 5 ]
Solution:
(i)
We have
X + Y = [ 7 0
2 5 ]
X − Y = [ 3 0
0 3 ]
Add both equations:
(X + Y) + (X − Y) = [ 7+3 0+0
2+0 5+3 ]
⇒ 2X = [ 10 0
2 8 ]
So,
X = ½ [ 10 0
2 8 ]
= [ 5 0
1 4 ]
Now subtract (X − Y) from (X + Y):
(X + Y) − (X − Y) = [ 7−3 0−0
2−0 5−3 ]
⇒ 2Y = [ 4 0
2 2 ]
So,
Y = ½ [ 4 0
2 2 ]
= [ 2 0
1 1 ]
Hence:
X = [ 5 0
1 4 ], Y = [ 2 0
1 1 ]
(ii)
2X + 3Y = [ 2 3
4 0 ]
3X + 2Y = [ 2 –2
–1 5 ]
To eliminate Y, multiply the first equation by 3 and the second by 2:
3(2X + 3Y) = [ 6 9
12 0 ]
2(3X + 2Y) = [ 4 –4
–2 10 ]
Subtract:
(6X + 9Y) – (6X + 4Y) = [ 6–4 9–(–4)
12–(–2) 0–10 ]
⇒ 5Y = [ 2 13
14 –10 ]
Y = 1/5 [ 2 13
14 –10 ]
= [ 2/5 13/5
4/5 –2 ]
Now substitute Y in 2X + 3Y = [ 2 3
4 0 ]
2X = [ 2 3
4 0 ] – 3Y
= [ 2 3
4 0 ] – 3 [ 2/5 13/5
14/5 –2 ]
= [ 2–6/5 3–39/5
4–42/5 0–(–6) ]
= [ (10–6)/5 (15–39)/5
(20–42)/5 6 ]
= [ 4/5 –24/5
–22/5 6 ]
Therefore,
X = ½ [ 4/5 –24/5
–22/5 6 ]
= [ 2/5 –12/5
–11/5 3 ]
Final Answers:
(i) X = [ 5 0
1 4 ],
Y = [ 2 0
1 1 ]
(ii) X = [ 2/5 –12/5
–11/5 3 ]
Y = [ 2/5 13/5
14/5 –2 ]
_____________________________________________________________
Q8: Find X, if
Y = [ 3 2
1 4 ] and 2X + Y = [ 1 0
–3 2 ]
Solution:
We have
2X + Y = [ 1 0
–3 2 ]
⇒ 2X = [ 1 0
–3 2 ] – Y
= [ 1–3 0–2
3–1 2–4 ]
= [ –2 –2
–4 –2 ]
Now divide by 2:
X = ½ [ –2 –2
–4 –2 ]
= [ –1 –1
–2 –1 ]
∴ X = [ –1 –1
–2 –1 ]
_____________________________________________________________
9. Find x and y, if
2 [ 1 3
0 x ] + [ y 0
1 2 ] = [ 5 6
1 8 ]
Solution:
First multiply the first matrix by 2:
[ 2 6
0 2x ] + [ y 0
1 2 ] = [ 5 6
1 8 ]
Add the two matrices on the left:
[ 2 + y 6 + 0
0 + 1 2x + 2 ] = [ 5 6
1 8 ]
Now equate corresponding elements:
From (1,1): 2 + y = 5 ⇒ y = 3
From (2,2): 2x + 2 = 8 ⇒ 2x = 6 ⇒ x = 3
∴ x = 3, y = 3
_____________________________________________________________
Q10: Solve the equation for x, y, z, and t if
2 ⎡ x z ⎤
⎣ y t ⎦ + 3 ⎡ 1 –1 ⎤
⎣ 0 2 ⎦ = 3 ⎡ 3 5 ⎤
⎣ 4 6 ⎦
Solution:
Step 1: Expand each term
2 ×
⎡ x z ⎤ = ⎡ 2x 2z ⎤
⎣ y t ⎦ ⎣ 2y 2t ⎦
3 ×
⎡ 1 –1 ⎤ = ⎡ 3 –3 ⎤
⎣ 0 2 ⎦ ⎣ 0 6 ⎦
3 ×
⎡ 3 5 ⎤ = ⎡ 9 15 ⎤
⎣ 4 6 ⎦ ⎣ 12 18 ⎦
Step 2: Substitute back
⎡ 2x 2z ⎤ + ⎡ 3 –3 ⎤ = ⎡ 9 15 ⎤
⎣ 2y 2t ⎦ ⎣ 0 6 ⎦ ⎣ 12 18 ⎦
Step 3: Add the matrices on the left-hand side
⎡ 2x + 3 2z – 3 ⎤
⎣ 2y + 0 2t + 6 ⎦
⎡ 9 15 ⎤
⎣ 12 18 ⎦
Step 4: Equate corresponding elements
2x + 3 = 9
2z – 3 = 15
2y = 12
2t + 6 = 18
Step 5: Solve for each variable
2x = 6 → x = 3
2z = 18 → z = 9
2y = 12 → y = 6
2t = 12 → t = 6
Final Answers:
x = 3
y = 6
z = 9
t = 6
_____________________________________________________________
Q11: If x[2 3] + y[–1 1] = [10 5], find the values of x and y.
Solution:
We have
x[2 3] + y[–1 1] = [10 5]
⇒ [2x – y, 3x + y] = [10, 5]
Equating the corresponding elements,
2x – y = 10 …(1)
3x + y = 5 …(2)
Add (1) and (2):
(2x – y) + (3x + y) = 10 + 5
5x = 15
x = 3
Substitute x = 3 in (1):
2(3) – y = 10
6 – y = 10
y = –4
Final Answer:
x = 3, y = –4
_____________________________________________________________
Q12:
Given
3 ⎡ x y ⎤ = ⎡ x 6 ⎤ + ⎡ 4 x + y ⎤
⎣ z w ⎦ ⎣ –1 2w ⎦ ⎣ z + w 3 ⎦,
find the values of x, y, z and w.
Solution:
Left-hand side:
3 ⎡ x y ⎤
⎣ z w ⎦
⎡ 3x 3y ⎤
⎣ 3z 3w ⎦
Right-hand side:
⎡ x 6 ⎤ + ⎡ 4 x + y ⎤ = ⎡ x + 4 x + y + 6 ⎤
⎣ –1 2w ⎦ ⎣ z + w 3 ⎦ ⎡ z + w – 1 2w + 3 ⎦
Now equate both sides:
⎡ 3x 3y ⎤ = ⎡ x + 4 x + y + 6 ⎤
⎣ 3z 3w ⎦ ⎣ z + w – 1 2w + 3 ⎦
Comparing corresponding elements:
3x = x + 4
3y = x + y + 6
3z = z + w – 1
3w = 2w + 3
From 3x = x + 4 → 2x = 4 → x = 2
From 3w = 2w + 3 → w = 3
From 3y = x + y + 6 → 2y = 2 + 6 → y = 4
From 3z = z + w – 1 → 2z = 3 – 1 → z = 1
Final Answer:
x = 2, y = 4, z = 1, w = 3
_____________________________________________________________
Q13:
If
⎡ cos x −sin x 0 ⎤
⎢ sin x cos x 0 ⎥
⎣ 0 0 1 ⎦
show that F(x) F(y) = F(x + y).
Solution
F(x) F(y) =
⎡ cos x −sin x 0 ⎤ ⎡ cos y −sin y 0 ⎤
⎢ sin x cos x 0 ⎥ × ⎢ sin y cos y 0 ⎥
⎣ 0 0 1 ⎦ ⎣ 0 0 1 ⎦
Now multiply (row × column):
First row, first column:
(cos x)(cos y) + (−sin x)(sin y) + 0·0 = cos x cos y − sin x sin y = cos(x + y)
First row, second column:
(cos x)(−sin y) + (−sin x)(cos y) + 0·0 = −(cos x sin y + sin x cos y) = −sin(x + y)
First row, third column:
(cos x)(0) + (−sin x)(0) + 0·1 = 0
Second row, first column:
(sin x)(cos y) + (cos x)(sin y) + 0·0 = sin x cos y + cos x sin y = sin(x + y)
Second row, second column:
(sin x)(−sin y) + (cos x)(cos y) + 0·0 = −sin x sin y + cos x cos y = cos(x + y)
Second row, third column:
(sin x)(0) + (cos x)(0) + 0·1 = 0
Third row:
(0)(cos y) + (0)(sin y) + (1)(0) = 0
(0)(−sin y) + (0)(cos y) + (1)(0) = 0
(0)(0) + (0)(0) + (1)(1) = 1
Therefore,
F(x) F(y) =
⎡ cos(x + y) −sin(x + y) 0 ⎤
⎢ sin(x + y) cos(x + y) 0 ⎥
⎣ 0 0 1 ⎦
= F(x + y).
Hence proved that F(x) F(y) = F(x + y).
_____________________________________________________________
Q14: Show that
(i)
[ 5 −1 ] [ 2 1 ] ≠ [ 2 1 ] [ 5 −1 ]
[ 6 7 ] [ 3 4 ] [ 3 4 ] [ 6 7 ]
Solution:
[ 5 −1 ] [ 2 1 ]
[ 6 7 ] [ 3 4 ]
= [ (5×2 + (−1)×3) (5×1 + (−1)×4) ]
[ (6×2 + 7×3) (6×1 + 7×4) ]
= [ 7 1 ]
[ 33 34 ]
Now,
[ 2 1 ] [ 5 −1 ]
[ 3 4 ] [ 6 7 ]
= [ (2×5 + 1×6) (2×(−1) + 1×7) ]
[ (3×5 + 4×6) (3×(−1) + 4×7) ]
= [16 5 ]
[39 25 ]
Hence,
[ 7 1 ] ≠ [ 16 5 ]
[ 33 34 ] [39 25 ]
Therefore,
[ 5 −1 ] [ 2 1 ] ≠ [ 2 1 ] [ 5 −1 ]
[ 6 7 ] [ 3 4 ] [ 3 4 ] [ 6 7 ]
_____________________________________________________________
(ii)
[ 1 2 3 ] [ −1 1 0 ] ≠ [ −1 1 0 ] [ 1 2 3 ]
[ 0 1 0 ] [ 0 −1 1 ] [ 0 −1 1 ] [ 0 1 0 ]
[ 1 1 0 ] [ 2 3 4 ] [ 2 3 4 ] [ 1 1 0 ]
Solution:
[ 1 2 3 ] [ −1 1 0 ]
[ 0 1 0 ] [ 0 −1 1 ]
[ 1 1 0 ] [ 2 3 4 ]
= [ (1×(−1)+2×0+3×2) (1×1+2×(−1)+3×3) (1×0+2×1+3×4) ]
[ (0×(−1)+1×0+0×2) (0×1+1×(−1)+0×3) (0×0+1×1+0×4) ]
[ (1×(−1)+1×0+0×2) (1×1+1×(−1)+0×3) (1×0+1×1+0×4) ]
= [ 5 8 14 ]
[ 0 −1 1 ]
[ −1 0 1 ]
Now,
[−1 1 0 ] [ 1 2 3 ]
[ 0 −1 1 ] [ 0 1 0 ]
[ 2 3 4 ] [ 1 1 0 ]
= [ ((−1)×1 + 1×0 + 0×1) ((−1)×2 + 1×1 + 0×1) ((−1)×3 + 1×0 + 0×0) ]
[ (0×1 + (−1)×0 + 1×1) (0×2 + (−1)×1 + 1×1) (0×3 + (−1)×0 + 1×0) ]
[ (2×1 + 3×0 + 4×1) (2×2 + 3×1 + 4×1) (2×3 + 3×0 + 4×0) ]
= [ −1 −1 −3 ]
[ 1 0 0 ]
[ 6 9 6 ]
Hence, the two results are not equal.
Therefore,
[ 1 2 3 ] [ −1 1 0 ] ≠ [ −1 1 0 ] [1 2 3 ]
[ 0 1 0 ] [ 0 −1 1 ] [ 0 −1 1 ] [ 0 1 0 ]
[ 1 1 0 ] [ 2 3 4 ] [ 2 3 4 ] [ 1 1 0 ]
_____________________________________________________________
Q15:
Find A² − 5A + 6I, if
A =
[ 2 0 1 ]
[ 2 1 3 ]
[ 1 −1 0 ]
Solution:
First,
A² = A × A
=
[ 2 0 1 ] [ 2 0 1 ]
[ 2 1 3 ] [ 2 1 3 ]
[ 1 −1 0 ] [ 1 −1 0 ]
=
[ (2×2 + 0×2 + 1×1) (2×0 + 0×1 + 1×(−1)) (2×1 + 0×3 + 1×0) ]
[ (2×2 + 1×2 + 3×1) (2×0 + 1×1 + 3×(−1)) (2×1 + 1×3 + 3×0) ]
[ (1×2 + (−1)×2 + 0×1) (1×0 + (−1)×1 + 0×(−1)) (1×1 + (−1)×3 + 0×0) ]
=
[ 5 −1 2 ]
[ 9 −2 5 ]
[ 0 −1 −2 ]
Now,
5A =
[ 10 0 5 ]
[ 10 5 15 ]
[ 5 −5 0 ]
and
6I =
[ 6 0 0 ]
[ 0 6 0 ]
[ 0 0 6 ]
∴ A² − 5A + 6I =
[ 5 −1 2 ] [ 10 0 5 ] + [ 6 0 0 ]
[ 9 −2 5 ] − [ 10 5 15 ] [ 0 6 0 ]
[ 0 −1 −2 ] [ 5 −5 0 ] [ 0 0 6 ]
=
[ (5−10+6) (−1−0+0) (2−5+0) ]
[ (9−10+0) (−2−5+6) (5−15+0) ]
[ (0−5+0) (−1−(−5)+0) (−2−0+6) ]
=
[ 1 −1 −3 ]
[ −1 −1 −10 ]
[ −5 4 4 ]
Answer: A² − 5A + 6I =
[ 1 −1 −3 ]
[ −1 −1 −10 ]
[ −5 4 4 ]
_____________________________________________________________
Q16: If
A =
[ 1 0 2 ]
[ 0 2 1 ]
[ 2 0 3 ],
prove that A³ − 6A² + 7A + 2I = 0.
Solution:
First, find A²:
A² = A × A
=
[ 1 0 2 ] [ 1 0 2 ]
[ 0 2 1 ] [ 0 2 1 ]
[ 2 0 3 ] [ 2 0 3 ]
=
[ (1×1 + 0×0 + 2×2) (1×0 + 0×2 + 2×0) (1×2 + 0×1 + 2×3) ]
[ (0×1 + 2×0 + 1×2) (0×0 + 2×2 + 1×0) (0×2 + 2×1 + 1×3) ]
[ (2×1 + 0×0 + 3×2) (2×0 + 0×2 + 3×0) (2×2 + 0×1 + 3×3) ]
=
[ 5 0 8 ]
[ 2 4 5 ]
[ 8 0 13 ]
Now, find A³ = A × A²
A³ =
[ 1 0 2 ] [ 5 0 8 ]
[ 0 2 1 ] [ 2 4 5 ]
[ 2 0 3 ] [ 8 0 13 ]
=
[(1×5 + 0×2 + 2×8) (1×0 + 0×4 + 2×0) (1×8 + 0×5 + 2×13) ]
[ (0×5 + 2×2 + 1×8) (0×0 + 2×4 + 1×0) (0×8 + 2×5 + 1×13) ]
[ (2×5 + 0×2 + 3×8) (2×0 + 0×4 + 3×0) (2×8 + 0×5 + 3×13) ]
=
[ 21 0 34 ]
[ 12 8 23 ]
[ 34 0 55 ]
Now compute each term in A³ − 6A² + 7A + 2I:
6A² =
[ 30 0 48 ]
[ 12 24 30 ]
[ 48 0 78 ]
7A =
[ 7 0 14 ]
[ 0 14 7 ]
[ 14 0 21 ]
2I =
[ 2 0 0 ]
[ 0 2 0 ]
[ 0 0 2 ]
∴ A³ − 6A² + 7A + 2I =
[ 21 0 34 ] [ 30 0 48 ] [ 7 0 14 ] [ 2 0 0 ]
[ 12 8 23 ] − [ 12 24 30 ] + [ 0 14 7 ] + [ 0 2 0 ]
[ 34 0 55 ] [ 48 0 78 ] [ 14 0 21 ] [ 0 0 2 ]
=
[ (21−30+7+2) (0−0+0+0) (34−48+14+0) ]
[ (12−12+0+0) (8−24+14+2) (23−30+7+0) ]
[ (34−48+14+0) (0−0+0+0) (55−78+21+2) ]
=
[ 0 0 0 ]
[ 0 0 0 ]
[ 0 0 0 ]
∴ A³ − 6A² + 7A + 2I = 0, proved.
_____________________________________________________________
Q17: If
A = [ 3 −2 ]
[ 4 −2 ] and I = [ 1 0 ]
[ 0 1 ],
find k so that A² = kA − 2I.
Solution:
A = [ 3 −2 ]
[ 4 −2 ]
Now,
A² = A × A
= [ 3 −2 ] [ 3 −2 ]
[ 4 −2 ] [ 4 −2 ]
= [ (3×3 + (−2)×4) (3×(−2) + (−2)×(−2)) ]
[ (4×3 + (−2)×4) (4×(−2) + (−2)×(−2)) ]
= [ (9 − 8) (−6 + 4) ]
[ (12 − 8) (−8 + 4) ]
= [ 1 −2 ]
[ 4 −4 ]
We are given that A² = kA − 2I.
So,
[ 1 −2 ] = k [ 3 −2 ] − 2 [ 1 0 ]
[ 4 −4 ] [ 4 −2 ] [ 0 1 ]
⇒ [ 1 −2 ] = [ 3k−2 −2k ]
[ 4k −2k−2 ]
Now equate the corresponding elements:
From (1,1): 1 = 3k − 2 ⇒ 3k = 3 ⇒ k = 1
Check with others:
(1,2): −2 = −2k ⇒ k = 1
(2,1): 4 = 4k ⇒ k = 1
(2,2): −4 = −2k − 2 ⇒ −4 = −2k − 2 ⇒ −2 = −2k ⇒ k = 1
∴ k = 1
_____________________________________________________________
Q18:
If A = [ 0 -tan(α/2)
tan(α/2) 0 ] and I is the 2×2 identity matrix, show that
I + A = (I − A) [ cos α -sin α
sin α cos α ]
Solution:
Let t = tan(α/2). Then
A = [ 0 -t
t 0 ].
So
I + A = [ 1 -t
t 1 ]
and
I − A = [ 1 t
-t 1 ].
Denote the rotation matrix by
R = [ cos α -sin α
sin α cos α ].
Compute (I − A) R by multiplying the matrices:
(I − A) R = [ 1 t
-t 1 ] × [ cos α -sin α
sin α cos α ]
= [ 1·cos α + t·sin α 1·(−sin α) + t·cos α
(−t)·cos α + 1·sin α (−t)·(−sin α) + 1·cos α ]
= [ cos α + t sin α −sin α + t cos α
−t cos α + sin α t sin α + cos α ].
We must show this equals I + A = [ 1 −t
t 1 ].
Use the half-angle formulas (in terms of t = tan(α/2)):
cos α = (1 − t^2) / (1 + t^2),
sin α = 2t / (1 + t^2).
Now evaluate the entries:
1. cos α + t sin α
= (1 − t^2)/(1 + t^2) + t·(2t/(1 + t^2))
= (1 − t^2 + 2t^2)/(1 + t^2)
= (1 + t^2)/(1 + t^2)
= 1.
2. −sin α + t cos α
= −(2t/(1 + t^2)) + t·((1 − t^2)/(1 + t^2))
= (−2t + t − t^3)/(1 + t^2)
= −t(1 + t^2)/(1 + t^2)
= −t.
Similarly, the lower-left entry:
−t cos α + sin α = t (we get the same simplification), and
the lower-right entry: t sin α + cos α = 1.
Therefore (I − A) R = [ 1 −t
t 1 ] = I + A.
Hence proved:
I + A = (I − A) [ cos α −sin α
sin α cos α ].
_____________________________________________________________
Q19: A trust fund has ₹30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide ₹30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of:
(a) ₹1800
(b) ₹2000
Solution:
A trust fund has ₹30,000 to be invested in two types of bonds.
Let
x = amount invested at 5%
y = amount invested at 7%
Total amount condition:
x + y = 30,000 … (1)
Total interest condition:
0.05x + 0.07y = required interest … (2)
We solve for each case.
(a) Required annual interest = ₹1800
From (2):
0.05x + 0.07y = 1800
Use (1): y = 30000 − x
Substitute:
0.05x + 0.07(30000 − x) = 1800
0.05x + 2100 − 0.07x = 1800
−0.02x = −300
x = 15000
Then
y = 30000 − 15000 = 15000
Answer for (a):
Invest ₹15,000 in the 5% bond and ₹15,000 in the 7% bond.
(b) Required annual interest = ₹2000
Equation:
0.05x + 0.07(30000 − x) = 2000
0.05x + 2100 − 0.07x = 2000
−0.02x = −100
x = 5000
Then
y = 30000 − 5000 = 25000
Answer for (b):
Invest ₹5,000 in the 5% bond and ₹25,000 in the 7% bond.
Final Answers
(a) ₹15,000 at 5% and ₹15,000 at 7%
(b) ₹5,000 at 5% and ₹25,000 at 7%
_____________________________________________________________
Q20: The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are ₹80, ₹60 and ₹40 each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra.
Solution:
Step 1 — convert dozens to numbers of books:
10 dozen = 10 × 12 = 120 chemistry books
8 dozen = 8 × 12 = 96 physics books
10 dozen = 10 × 12 = 120 economics books
Write quantity vector Q and price row vector P:
Q = [120
96
120] (a 3 × 1 column)
P = [80 60 40] (a 1 × 3 row)
Total revenue = P × Q (1×3 times 3×1 gives scalar)
Compute:
P × Q = 80×120 + 60×96 + 40×120
= 9600 + 5760 + 4800
= 20,160
Answer:
The bookshop will receive ₹20,160 in total from selling all the books.
_____________________________________________________________
Q21: The restriction on n, k and p so that PY + WY will be defined are:
(A) k = 3, p = n
(B) k is arbitrary, p = 2
(C) p is arbitrary, k = 3
(D) k = 2, p = 3
Solution:
X is 2 × n
Y is 3 × k
Z is 2 × p
W is n × 3
P is p × k
We need PY + WY to be defined.
That means:
1. PY must be defined
P is p × k
Y is 3 × k
For multiplication PY, the number of columns of P must equal number of rows of Y:
k = 3
Then PY becomes p × k × 3 × k → p × k.
2. WY must be defined
W is n × 3
Y is 3 × k
3 = 3 → multiplication is valid.
Result is n × k.
3. For addition PY + WY, both results must have the same order:
PY is p × k
WY is n × k
So p = n.
Final restrictions:
k = 3 and p = n
Correct Answer: (A) k = 3, p = n
_____________________________________________________________
Q22: If n = p, then the order of the matrix 7X – 5Z is:
(A) p × 2 (B) 2 × n (C) n × 3 (D) p × n
Solution:
From the earlier given matrix orders:
X is of order 2 × n
Z is of order 2 × p
Given n = p, Z becomes 2 × n.
So:
7X has order 2 × n
5Z has order 2 × n
Since subtraction is possible only when orders match,
7X – 5Z has order 2 × n.
Correct Answer: (B) 2 × n
_____________________________________________________________
EXERCISE 3.3
Q1: Find the transpose of each of the following matrices:
(i) [ 5
1/2
-1 ]
(ii) [ 1 -1
2 3 ]
(iii) [ -1 5 6
√3 5 6
2 3 -1 ]
Answers:
(i) The transpose of the 3×1 column [ 5 ; 1/2 ; −1 ] is the 1×3 row:
[ 5 1/2 −1 ]
(ii) The transpose of the 2×2 matrix [ 1 −1 ; 2 3 ] is:
[ 1 2
−1 3 ]
(iii) The transpose of the 3×3 matrix
[ −1 5 6
√3 5 6
2 3 −1 ]
is
[ −1 √3 2
5 5 3
6 6 −1 ]
_____________________________________________________________
Q2: If A =
[ -1 2 3
5 7 9
-2 1 1 ]
and B =
[ -4 1 -5
1 2 0
1 3 1 ], then verify that
(i) (A + B)' = A' + B'
(ii) (A – B)' = A' – B'
Solution
First find A + B
A + B =
[ (-1 + -4) (2 + 1) (3 + -5)
(5 + 1) (7 + 2) (9 + 0)
(-2 + 1) (1 + 3) (1 + 1) ]
A + B =
[ -5 3 -2
6 9 9
-1 4 2 ]
Now find (A + B)'
(A + B)' =
[ -5 6 -1
3 9 4
-2 9 2 ]
Now find A' and B'
A' =
[ -1 5 -2
2 7 1
3 9 1 ]
B' =
[ -4 1 1
1 2 3
-5 0 1 ]
Now find A' + B'
A' + B' =
[ (-1 + -4) (5 + 1) (-2 + 1)
(2 + 1) (7 + 2) (1 + 3)
(3 + -5) (9 + 0) (1 + 1) ]
A' + B' =
[ -5 6 -1
3 9 4
-2 9 2 ]
Thus (A + B)' = A' + B' verified.
Part (ii)
First find A – B
A – B =
[ (-1 - -4) (2 - 1) (3 - -5)
(5 - 1) (7 - 2) (9 - 0)
(-2 - 1) (1 - 3) (1 - 1) ]
A – B =
[ 3 1 8
4 5 9
-3 -2 0 ]
Now find (A – B)'
(A – B)' =
[ 3 4 -3
1 5 -2
8 9 0 ]
Now find A' – B'
A' – B' =
[ (-1 - -4) (5 - 1) (-2 - 1)
(2 - 1) (7 - 2) (1 - 3)
(3 - -5) (9 - 0) (1 - 1) ]
A' – B' =
[ 3 4 -3
1 5 -2
8 9 0 ]
Thus (A – B)' = A' – B' verified.
_____________________________________________________________
Q3: If A' = [ 3 4
-1 2
0 1 ]
and B = [ -1 2 1
1 2 3 ], then verify that
(i) (A + B)' = A' + B'
(ii) (A – B)' = A' – B'
First convert A' to A (since A' is given)
A' =
[ 3 4
-1 2
0 1 ]
So A is the transpose of A':
A =
[ 3 -1 0
4 2 1 ]
B is already given as:
B =
[ -1 2 1
1 2 3 ]
(i) VERIFY (A + B)' = A' + B'
Step 1: Find A + B
A + B =
[ (3 + -1) (-1 + 2) (0 + 1)
(4 + 1) (2 + 2) (1 + 3) ]
A + B =
[ 2 1 1
5 4 4 ]
Step 2: Find (A + B)'
(A + B)' =
[ 2 5
1 4
1 4 ]
Step 3: Find B'
B' =
[ -1 1
2 2
1 3 ]
Step 4: Find A' + B'
A' + B' =
[ (3 + -1) (4 + 1)
(-1 + 2) (2 + 2)
(0 + 1) (1 + 3) ]
A' + B' =
[ 2 5
1 4
1 4 ]
Thus,
(A + B)' = A' + B' VERIFIED
(ii) VERIFY (A – B)' = A' – B'
Step 1: Find A – B
A – B =
[ (3 - -1) (-1 - 2) (0 - 1)
(4 - 1) (2 - 2) (1 - 3) ]
A – B =
[ 4 -3 -1
3 0 -2 ]
Step 2: Find (A – B)'
(A – B)' =
[ 4 3
-3 0
-1 -2 ]
Step 3: Find A' – B'
A' – B' =
[ (3 - -1) (4 - 1)
(-1 - 2) (2 - 2)
(0 - 1) (1 - 3) ]
A' – B' =
[ 4 3
-3 0
-1 -2 ]
Thus,
(A – B)' = A' – B' VERIFIED
_____________________________________________________________
Q4: If A' = [ -2 3
1 2 ]
and B = [ -1 0
1 2 ], then find (A + 2B)'
First get A by transposing A':
A' =
[ -2 3
1 2 ]
So A = (A')' =
[ -2 1
3 2 ]
Now compute 2B:
B =
[ -1 0
1 2 ]
2B =
[ -2 0
2 4 ]
Next compute A + 2B:
A + 2B =
[ (-2 + -2) (1 + 0)
(3 + 2) (2 + 4) ]
A + 2B =
[ -4 1
5 6 ]
Finally take the transpose:
(A + 2B)' =
[ -4 5
1 6 ]
Answer: (A + 2B)' = [ -4 5
1 6 ]
_____________________________________________________________
Q5: For the matrices A and B, verify that (AB)' = B'A', where
(i) A =
[ 1
-4
3 ], B = [ -1 2 1 ]
(ii) A =
[ 0
1
2 ], B = [ 1 5 7 ]
(i) VERIFY (AB)' = B'A'
Step 1: Compute AB
A is 3×1 and B is 1×3, so AB is 3×3.
A =
[ 1
-4
3 ]
B = [ -1 2 1 ]
Multiply:
AB =
[ 1 × -1 1 × 2 1 × 1
-4 × -1 -4 × 2 -4 × 1
3 × -1 3 × 2 3 × 1 ]
AB =
[ -1 2 1
4 -8 -4
-3 6 3]
Step 2: Find (AB)'
(AB)' =
[ -1 4 -3
2 -8 6
1 -4 3 ]
Step 3: Compute B'A'
First find B':
B = [ -1 2 1 ]
B' =
[ -1
2
1 ]
A' = [ 1 -4 3 ]
Now multiply B'A':
B'A' =
[ -1 × 1 -1 × -4 -1 × 3
2 × 1 2 × -4 2 × 3
1 × 1 1 × -4 1 × 3 ]
B'A' =
[ -1 4 -3
2 -8 6
1 -4 3 ]
Verified: (AB)' = B'A'
(ii) VERIFY (AB)' = B'A'
Step 1: Compute AB
A =
[ 0
1
2 ]
B = [ 1 5 7 ]
AB =
[ 0×1 0×5 0×7
1×1 1×5 1×7
2×1 2×5 2×7 ]
AB =
[ 0 0 0
1 5 7
2 10 14 ]
Step 2: Find (AB)'
(AB)' =
[ 0 1 2
0 5 10
0 7 14 ]
Step 3: Compute B'A'
B' =
[ 1
5
7 ]
A' = [ 0 1 2 ]
Now multiply:
B'A' =
[ 1×0 1×1 1×2
5×0 5×1 5×2
7×0 7×1 7×2 ]
B'A' =
[ 0 1 2
0 5 10
0 7 14 ]
Verified: (AB)' = B'A'
_____________________________________________________________
Q6: If (i) A = [ cos α sin α
−sin α cos α ], then verify that A′A = I
Solution:
A′ denotes the transpose of A.
So,
A′ = [ cos α −sin α
sin α cos α ]
Now multiply A′ and A:
A′A =
[ cos α −sin α ] [ cos α sin α ]
[ sin α cos α ] [ −sin α cos α ]
Compute each entry:
• (1,1) entry:
cos α · cos α + (−sin α) · (−sin α)
= cos²α + sin²α
= 1
• (1,2) entry:
cos α · sin α + (−sin α) · cos α
= cos α sin α − cos α sin α
= 0
• (2,1) entry:
sin α · cos α + cos α · (−sin α)
= sin α cos α − sin α cos α
= 0
• (2,2) entry:
sin α · sin α + cos α · cos α
= sin²α + cos²α
= 1
Therefore,
A′A = [ 1 0
0 1 ]
which is the identity matrix.
Hence verified.
_____________________________________________________________
(ii) If A = [ sin α cos α
−cos α sin α ], then verify that A′A = I
Solution:
A′ = [ sin α −cos α
cos α sin α ]
Now multiply A′ and A:
A′A =
[ sin α −cos α ] [ sin α cos α ]
[ cos α sin α ] [ −cos α sin α ]
Compute entries:
• (1,1) entry:
sin α · sin α + (−cos α) · (−cos α)
= sin²α + cos²α
= 1
• (1,2) entry:
sin α · cos α + (−cos α) · sin α
= sin α cos α − sin α cos α
= 0
• (2,1) entry:
cos α · sin α + sin α · (−cos α)
= cos α sin α − cos α sin α
= 0
• (2,2) entry:
cos α · cos α + sin α · sin α
= cos²α + sin²α
= 1
Therefore,
A′A = [ 1 0
0 1 ]
which is the identity matrix.
Hence verified.
_____________________________________________________________
Q7: (i) Show that the matrix
A =
[ 1 -1 5 ]
[ -1 2 1 ]
[ 5 1 3 ]
is a symmetric matrix.
Solution:
A matrix is symmetric if Aᵀ = A.
Write the transpose Aᵀ by interchanging rows and columns:
Aᵀ =
[ 1 -1 5 ]
[ -1 2 1 ]
[ 5 1 3 ]
We see that every element aᵢⱼ equals aⱼᵢ.
So Aᵀ = A.
Therefore, A is a symmetric matrix.
_____________________________________________________________
(ii) Show that the matrix
A =
[0 1 -1 ]
[ -1 0 1 ]
[ 1 -1 0 ]
is a skew-symmetric matrix.
Solution:
A matrix is skew-symmetric if Aᵀ = -A.
Find Aᵀ by interchanging rows and columns:
Aᵀ =
[ 0 -1 1 ]
[ 1 0 -1 ]
[ -1 1 0 ]
Now find -A by changing the sign of every entry of A:
-A =
[ 0 -1 1 ]
[ 1 0 -1 ]
[ -1 1 0 ]
We see that Aᵀ = -A.
Therefore, A is a skew-symmetric matrix.
_____________________________________________________________
Q8: For the matrix A =
[ 1 5 ]
[ 6 7 ]
(i) (A + Aᵀ) is a symmetric matrix
Solution:
First compute the transpose Aᵀ by interchanging rows and columns:
Aᵀ =
[ 1 6 ]
[ 5 7 ]
Now form A + Aᵀ:
A + Aᵀ =
[ 1+1 5+6 ]
[ 6+5 7+7 ]
So
A + Aᵀ =
[ 2 11 ]
[ 11 14 ]
Compare with its transpose:
(A + Aᵀ)ᵀ =
[ 2 11 ]
[ 11 14 ]
Since (A + Aᵀ)ᵀ = (A + Aᵀ), the matrix A + Aᵀ is symmetric.
_____________________________________________________________
(ii) (A − Aᵀ) is a skew-symmetric matrix
Solution:
Compute A − Aᵀ:
A − Aᵀ =
[ 1−1 5−6 ]
[ 6−5 7−7 ]
So
A − Aᵀ =
[ 0 −1 ]
[ 1 0 ]
Find its transpose:
(A − Aᵀ)ᵀ =
[ 0 1 ]
[ −1 0 ]
Observe that (A − Aᵀ)ᵀ = −(A − Aᵀ). Therefore A − Aᵀ is skew-symmetric.
_____________________________________________________________
Q9: Find 1/2 (A + Aᵀ) and 1/2 (A − Aᵀ), when A =
[ 0 a b ]
[ −a 0 c ]
[ −b −c 0 ]
Solution:
First compute the transpose Aᵀ (swap rows and columns):
Aᵀ =
[ 0 −a −b ]
[ a 0 −c ]
[ b c 0 ]
Now form the sum and difference.
A + Aᵀ =
[ 0+0 a+(−a) b+(−b) ]
[ (−a)+a 0+0 c+(−c) ]
[ (−b)+b (−c)+c 0+0 ]
So
A + Aᵀ =
[ 0 0 0 ]
[ 0 0 0 ]
[ 0 0 0 ]
Hence
1/2 (A + Aᵀ) =
[ 0 0 0 ]
[ 0 0 0 ]
[ 0 0 0 ] (the zero matrix)
Next,
A − Aᵀ =
[ 0−0 a−(−a) b−(−b) ]
[ (−a)−a 0−0 c−(−c) ]
[ (−b)−b (−c)−c 0−0 ]
So
A − Aᵀ =
[ 0 2a 2b ]
[ −2a 0 2c ]
[ −2b −2c 0 ]
Therefore
1/2 (A − Aᵀ) =
[ 0 a b ]
[ −a 0 c ]
[ −b −c 0 ]
which is exactly A. (This reflects that A is skew-symmetric, so its symmetric part is the zero matrix and its skew-symmetric part is itself.)
_____________________________________________________________
Q10: Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
S = 1/2 (A + Aᵀ) is symmetric and K = 1/2 (A − Aᵀ) is skew-symmetric, and A = S + K.
(i) A = [ 3 5 ]
[ 1 −1 ]
Aᵀ = [ 3 1 ]
[ 5 −1 ]
S = 1/2 (A + Aᵀ) = 1/2 [ 3+3 5+1 ] = [ 3 3 ]
[ 1+5 −1+−1 ] [ 3 −1 ]
K = 1/2 (A − Aᵀ) = 1/2 [ 3−3 5−1 ] = [ 0 2 ]
[ 1−5 −1−(−1)] [ −2 0 ]
Check: S + K = [3 5; 1 −1] = A.
_____________________________________________________________
(ii) A = [ 6 −2 2 ]
[ −2 3 −1 ]
[ 2 −1 3 ]
Since A = Aᵀ already (A is symmetric),
S = 1/2 (A + Aᵀ) = A = [ 6 −2 2 ]
[ −2 3 −1 ]
[ 2 −1 3 ]
K = 1/2 (A − Aᵀ) = 0 (the 3×3 zero matrix).
_____________________________________________________________
(iii) A =
[ 3 3 −1 ]
[ −2 −2 1 ]
[ −4 −5 2 ]
Aᵀ =
[ 3 −2 −4 ]
[ 3 −2 −5 ]
[ −1 1 2 ]
S = 1/2 (A + Aᵀ) =
1/2 ·
[ 3+3 3+(−2) −1+(−4) ]
[ −2+3 −2+(−2) 1+(−5) ]
[ −4+(−1) −5+1 2+2 ]
= [ 3 1/2 −5/2 ]
[ 1/2 −2 −2 ]
[ −5/2 −2 2 ]
K = 1/2 (A − Aᵀ) =
1/2 ·
[ 3−3 3−(−2) −1−(−4) ]
[ −2−3 −2−(−2) 1−(−5) ]
[ −4−(−1) −5−1 2−2 ]
= [ 0 5/2 3/2 ]
[ −5/2 0 3 ]
[ −3/2 −3 0 ]
Check: S + K = A.
_____________________________________________________________
(iv) A =
[ 1 5 ]
[ −1 2 ]
Aᵀ =
[ 1 −1 ]
[ 5 2 ]
S = 1/2 (A + Aᵀ) = 1/2 [ 1+1 5+(−1) ] = [ 1 2 ]
[ −1+5 2+2 ] [ 2 2 ]
K = 1/2 (A − Aᵀ) = 1/2 [ 1−1 5−(−1) ] = [ 0 3 ]
[ −1−5 2−2 ] [ −3 0 ]
Check: S + K = [1 5
−1 2] = A.
_____________________________________________________________
Q11: If A, B are symmetric matrices of same order, then AB − BA is a
(A) Skew symmetric matrix
(B) Symmetric matrix
(C) Zero matrix
(D) Identity matrix
Solution (simple):
For symmetric matrices A and B,
Aᵀ = A and Bᵀ = B.
Now check (AB − BA):
(AB − BA)ᵀ = BᵀAᵀ − AᵀBᵀ
= BA − AB
= −(AB − BA)
Since the transpose gives the negative, AB − BA is skew symmetric.
Correct Answer: (A) Skew symmetric matrix
_____________________________________________________________
Q12: If A = [ cos α −sin α
sin α cos α ] and A + A′ = I, then the value of α is
(A) π/6 (B) π/3 (C) π (D) 3π/2
Solution (clean):
A + A′ = I gives:
2 cos α = 1
So, cos α = 1/2
Therefore,
α = π/3
Correct Answer: π/3
_____________________________________________________________
© 2024. All rights reserved.
Professor of Practice
Bridging academia and industry through innovative teaching and real-world experience for academic success.